1. Митохондрии во множестве содержатся в клетках, имеют форму шариков или эллипсов с диаметром обычно 1 мкм, хотя у одноклеточных зеленых водорослей или некоторых животных всего одна огромная митохондрия.
2. Имеют две мембраны, причем внутренняя собрана в складки — кристы. Кристы включают ферменты синтеза АТФ из питательных веществ. Они лежат со стороны матрикса в виде очень мелких грибовидных телец, видимых только в электронный микроскоп. Более того, есть еще другие ферменты синтеза АТФ — АТФ-синтетазы.
3. Таким образом, в митохондриях идет окислительное фосфорилирование (образование АТФ из АДФ), в них расположена цепь переноса электронов и АТФ-синтетаза.
4. Чем больше энергозатрат требует клетка, тем больше в ней митохондрий. Много их в клетках мышц, например, в летательных мышцах насекомых, либо в молодых делящихся клетках. В сперматозоиде есть одна митохондрия — крупная, спирально свернутая вокруг центра жгутика.
5. Матрикс — пространство внутри митохондрии, представленное гомогенным раствором. В нем в виде зерен накапливаются ионы кальция, магния, а также углеводы, к примеру, гликоген. Состав матрикса: нити ДНК, РНК, митохондриальные рибосомы.
6. ДНК всегда кольцевая, представлена 2–6 копиями и лишена гистонов. На рибосомах идет синтез собственных митохондриальных белков. Аппарат биосинтеза белка сходен с прокариотическим.
7. Все ли белки митохондрии сами синтезируют для себя? Напротив, митохондрии мало синтезируют белков. Большая часть белков закодированы в ДНК ядра, и синтезируются в цитоплазме, а затем поступают в митохондрии.
8. Митохондрии способны делиться.
9. Каково происхождение митохондрий? В связи со сходством их строения с бактериями, возникла теория симбиотического происхождения клетки эукариот — митохондрии, возможно, были самостоятельными прокариотами (бактериями). Прокариоты сами проникли в клетку (или были захвачены ею) и превратились в митохондрии.
Пластиды
1. Являются полуавтономными органеллами высших растений, водорослей, способными к фотосинтезу. Содержат собственный геном, 2–4 мембраны и белоксинтезирующий аппарат.
2. Три главных типа пластид: лейко-, хромо- и хлоропласты. Лейкопласты обесцвечены, расположены в неосвещенных частях растений, например, в клетках корней, клубнях картофеля. Хромопласты содержат пигменты каротиноиды и поэтому имеют яркую окраску, желто-оранжево-красную, служа зачастую для приманки животных к плодам и листьям. Хлоропласты содержат зеленый хлорофилл, их ведущая функция — фотосинтез.
3. Пластиды могут осуществлять переход: хлоропласты в хромопласты (при созревании плодов и осеннем изменении листьев), лейкопласты в хлоропласты (позеленение картофеля). Зеленые хлоропласты при отсутствии света могут снова превращаться в бесцветные лейкопласты.
4. Строение хлоропластов таково:
1) двояковыпуклая линза с наружной и внутренней складчатой мембраной, складки которой имеют вид пузырьков и называются тилакоидами;
2) тилакоиды, собранные в стопки в виде монет — граны (около 50 гран в каждом хлоропласте, а хлоропластов в клетках высших растений около 40);
3) ламеллы — тонкие внутренние складки, соединяющие разные граны, а также связывающие граны с наружной мембраной хлоропласта.
5. Синтез АТФ в хлоропласте идет за счет ферментов и пигментов, улавливающих свет в тилакоидах.
6. Внутренняя среда хлоропластов называется стромой, содержит ферменты синтеза органики при затрате энергии АТФ.
7. Собственный белоксинтезирующий материал — кольцевая двухцепочечная ДНК и рибосомы.
8. Пластиды также имеют способность к делению.
9. В связи со сходством в строении с бактериями, здесь также работает теория симбиотического происхождения клетки эукариот — возможно, хлоропласты были самостоятельными прокариотами.
Поля помеченные * являются обязательными для заполнения
Поля помеченные * являются обязательными для заполнения
Поля помеченные * являются обязательными для заполнения